HoloLens 2 support using OpenXr Remoting

This tutorial will allow you to stream directly to your HoloLens 2 using VTK, from scratch. It is a 3-step
process. First, you will build and install the OpenXR SDK in your computer. Then, you will build the VTK
and finally, you will try a sample.

OpenXR SDK

Build and install the OpenXR_SDK

1. Open CMake and select the OpenXR-SDK(-raw) folder in the source code. Create another folder
right next to it called “OpenXR-SDK_x64_ Build”. Click on “Configure”.

A CMake 3.20.5 - C:/Users/IGTNavigation/Projects/Alicia_C/ProjectWeek/VTK_Remote_Rendering-LucasGandel/OpenXR_SDK/OpenxR-5DK x64... — O

File Tools Options Help

Where i the source code:

C:Users/1GTNavigation/ Projects/ Alicia_C/ProjectWeek /VTK_Remcts_Rendering-LucasGandel/CpenXR_SDK/OpenxR-S0K-raw

X

| Browvise Source..,

Presst: <oustom:s
Where to build the binaries: | C:/Users/IGTNavigationProjects/ Alicia_C/ProjectWesk /VTK_Remcte_Rendering-LucasGandel/OpenR_SDK/OpenXR-SDK_x4_Buid w | Erowsse Build...
Search: || | |:| Grouped Advanced 52:' Add Entry Remaovwve Entry Environment...

2. If you haven’t created the build folder in advance, CMake will ask you to create it automatically.
Select “Yes”. Then, the following dialog will display. You must specify your Visual Studio Version
(For instance, Visual Studio 16 2019) and the platform for the generator (x64).

A

Specify the generator for this project
Visual Studio 16 2019 e

Optional platform for generator(if empty, generator uses: x64)

[x64 v |

Optional toolset to use (argument to -T)

(@ Use default native compilers

() specify native compilers
() specify toolchain file for cross-compiling

() specify options for cross-compiling

Finish Cancel

3. Use the “Search” region to find options with CMake (make sure the “Advanced” checkbox is on)
and change the CMAKE_INSTALL_PREFIX to the path “[same path as the one of OpenXR-
SDK_x64_Build but this time finished in OpenXR-SDK_x64 _Install]”

4. Setthe DYNAMIC_LOADER option to ON.

5. Configure > Generate > Open Project

6. InVisual Studio, make sure you work in Release x64 mode. Then, right click on ALL_BUILD inside
“CMake predefined targets” and select “Build”. You can also build everything by right clicking on
the main “Solution ‘OPENXR"”.

7. Once finished, right click on INSTALL right below ALL_BUILD and select “Project Only > Build only
INSTALL”.

™1 Solution 'OPENXR' (7 of 7 projects)
4 gl CMake predefined targets
> [ALL_BUILD
I
> [ZERO.
[Ml Generated
b Bl Helpers
I Ml Loader
VTK
Build the VTK.

1. Open CMake and select the vtk-OpenXR-DX-Remoting(-raw) folder in the source code. Create
another folder right next to it called “vtk-OpenXR-DX-Remoting_x64_Build”. If you don’t create
it in advance, it will be created automatically.

2. Change the CMAKE_INSTALL_PREFIX to a path like “[same path as the one of vtk-OpenXR-DX-
Remoting_x64_Build but this time finished in vtk-OpenXR-DX-Remoting_x64_Install]”

3. Setthe VTK_MODULE_ENABLE_VTK_RenderingOpenXR option from DEFAULT to YES.

4. Select “Configure” and “Generate”. You will get an error.

5. Change the paths of the variables: OpenXR_LIBRARY and OpenXR_INCLUDE_DIRS (which would
appear as “NOTFOUND") to:

a. OpenXR_LIBRARY:
C:/Users/IGTNavigation/Projects/Alicia_C/ProjectWeek/VTK_Remote_Rendering-
LucasGandel/1-OpenXR_SDK/OpenXR-SDK_x64_Install/lib/openxr_loaderd.lib

b. OpenXR_INCLUDE_DIR:
C:\Users\IGTNavigation\Projects\Alicia_C\ProjectWeek\VTK_Remote _Rendering-
LucasGandel\1-OpenXR_SDK\OpenXR-SDK_x64_Install\include\openxr

6. Select “Configure”, “Generate” and “Open Project”.

7. Invisual Studio, make sure you work in Release x64 mode. Then, look at the Solution Explorer

and scroll down until “RenderingOpenXR”. Right click on it -> Manage Nuget Packages. Install
the following:

a. Microsoft.Holographic.Remoting.OpenXr (version 2.5.0)

b. OpenXR.Headers (default version)

c. OpenXR.Loader (default version)

i

9. Right click on “Solution ‘VTK’” in the top of the Solution Explorer and select “Build Solution”.

RenderingC

ore

RenderingFr
RenderingGL2P50penGL2

Renderinglmage

Renderinglabel
RenderingLOD
RenderingOpenGL2
RenderingQpe

RenderingSceneGraph

Renderingll

RenderingVi

Rendering

olume

me0penGL2

Installed Updates

- & D Include prerelease

OpenXR application

ro_\ OpenXR.Loader by Kh

Khronos OpenXR loader and head e IWP OpenXR application

Right click again on “RenderingOpenXR” and select Properties > C/C++ > Language > C++
Language Standard > ISO C++ 17 Standard (/std:c++17). Then, apply changes and select OK.

Configuration: | Active(Debug)

v v v v w7

4 Cenfiguration Properties

General

Advanced

Debugging

WC++ Directories

C/C++
General
Optimization
Preprocessor
Code Generation
Language
Precompiled Heade
Qutput Files
Browse Information
Advanced
All Options
Command Line

Linker

Manifest Tool

XML Document Genera

Browse Information

Build Events

L4l

~ | Platform: | Active(x64) w Configuration Manager...
Disable Language Extensions MNe
Conformance mode Mo

Treat WChar_t As Built in Type Yes (/Zc:wchar_t)
Force Conformance in For Laop Sc Yes ((ZcforScope)
Remove unreferenced code and d Yes (/Zcinling)
Enforce type conversion rules
Enable Run-Time Type Information Yes (/GR)
Open MP Suppart
150 C++17 Standard (std:c++17)]
C Language StandalDefault (150 C++14 Standard)
Enable C++ Modulgl50 C++14 Standard (/stdic++14)
150 C++17 Standard (fstdic++17)

Preview - Features from the Latest C++ Working Draft (/stdic++latest)

C++ Language Standard
Determines the C++ language standard the compiler will enforce. It is recommended to use
the latest version when possible. (fstdic++14, /stdic++17, /stdic++latest)

QK Cancel Apply

Test

Build the Lucas Gandel’s VTK test-dev.

1.

Repeat the same steps as for building the VTK with the following configuration in CMake:
Source code path:

C:/Users/IGTNavigation/Desktop/Alicia_Desktop/Project_ Week/VTKRemoteRendering/3-
VTK Test-dev_LucasExample-raw

Where to build the binaries:

C:/Users/IGTNavigation/Desktop/Alicia_Desktop/Project_ Week/VTKRemoteRendering/3-
VTK Test-dev_LucasExample_x64_Build

a.

OpenXR_DIR =

C:\Users\IGTNavigation\Desktop\Alicia_Desktop\Project_ Week\VTKRemoteRendering\1
-OpenXR-SDK_x64_Install\cmake

VTK_DIR =

C:\Users\IGTNavigation\Desktop\Alicia_Desktop\Project Week\VTKRemoteRendering\2
-vtk_x64 Build

OpenXR_LIBRARY =

C:\Users\IGTNavigation\Desktop\Alicia_Desktop\Project Week\VTKRemoteRendering\1
-OpenXR-SDK_x64_Install\lib\openxr_loader.lib

OpenXR_INCLUDE_DIR =

C:\Users\IGTNavigation\Desktop\Alicia_Desktop\Project Week\VTKRemoteRendering\1
-OpenXR-SDK_x64_Install\include\openxr

You may have to configure at some point until all the options are visible.

Also, don’t forget to change again the CMAKE_INSTALL_PREFIX to a path like “[same path as the
one of 3-VTK_Test-dev_LucasExample_x64 Build but this time finished in 3-VTK_Test-
dev_LucasExample_x64 Install]”

Configure > Generate > Open Project

In visual studio, set the mode to Release x64.

Right click on TestOpenXRiInitialization project in the Solution Explorer and add the same NuGet
packages as to the VTK:

a.

Microsoft.Holographic.Remoting.OpenXr (version 2.5.0)

b. OpenXR.Headers (default version)

C.

OpenXR.Loader (default version)

Right click on “ALL_BUILD” or “Solution ‘TestOpenXRInitialization’” and select Build solution /

Build

Microsoft’s Oficial sample

1.

Download the official Mixed Reality Holographic Remoting sample from:
https://qgithub.com/microsoft/MixedReality-HolographicRemoting-Samples/tree/Version 2.5.0

Unzip the downloaded folder and travel to
C:\Users\IGTNavigation\Desktop\Alicia_Desktop\Project_Week\VTKRemoteRendering\4-

https://github.com/microsoft/MixedReality-HolographicRemoting-Samples/tree/Version_2.5.0

MixedReality-HolographicRemoting-Samples-master\player\sample. Once there, double click in
the SamplePlayer.sin file to open it with Visual Studio.
3. Select the mode “Release ARM64 Remote Machine”
b File Edit View Project Build Debug Test Analy: . Extensions Window Help

Release ARMBS p Remote Machine - [=

4. Right click on SamplePlayer (Universal Windows) project inside the Solution explorer and select
“Properties”.

Solution Explorer -

F |

ymmaon.cpp
ymmon.h

y5hader.hlsl

pdater.cpp

5. Configuration Properties > Debugging > Machine Name. Set your HoloLens 2 IP address. You can
find it in your HoloLens, inside the advanced configuration of your wifi. Alternatively, you can see
inside the “HoloRemoting” app of your HoloLens.

Configuration: | Active(Release) w | Platform: | Active(ARME4) o Configuration Manager...
I Common Properties |Debugger to launch:
4 Configuration Properties i
IRemote Machine v
General
Debugging
VC++ Directories Launch Application Yes
b C/C++ Allow Local Network Loopback es
I+ Linker Debugger Type Native Only
I Manifest Tool Machine Name 192.168.43.120
> XML Document Generator Authentication Type Universal (Unencrypted Protocol)
I> Browse Information Deploy Visual C++ Debug Runtime Libr No
[Build Events Amp Default Accelerator WARP software accelerator
I> Custom Build Step Package Layout Path
- Code Analysis Advanced Remote Deployment Type Copy To Device
I> HLSL Compiler Package Registration Path
Remove Non-Layout Files from Device No
Command Line Arguments
Launch Application
Specifies whether to launch my application immediately or wait to debug my application when it starts
< » | | running.

0K Cancel Apply

N

Right click on “Solution ‘SamplePlayer’” and select “Restore NuGet packages”
Press on “Remote Machine” to execute the solution.
Once it is running, you can launch your own .sIn file on a parallel Visual Studio window to see your

models in your HoloLens.
You are all set!

Thank you for reading, we hope this tutorial helped,

Lucas Gandel and Alicia Pose Diez de la Lastra

